中文字幕8区 I 在线视频你懂得一区二区三区 I 美女和男生黄色羞羞视频 I 成人教育av在线 I gogogo高清在线观看一区二区 I 日本不卡一区二区三区高清视频 I 成人网欧美在线视频 I 中文字幕有码在线观看 I 射一射黄色网 I 日韩午夜av在线 I 国产成 人 综合 亚洲网站 I 92性色在线观看www免费 I 日韩欧美色综合 I 欧美日韩久久久久久 I 亚洲 欧洲 国产 伦综合 I 日韩精品视频在线免费观看 I 黄在线观看免费 I 日本大胆人体视频 I 久久伊人国产 I 国产精品私房写真福利视频 I 91久久久在线 I 欧美国产精品中文字幕 I 午夜影视日本亚洲欧洲精品 I 色偷偷网友自拍 I 第四色婷婷网站 I 大胆操在线播放视频 I 欧美 偷窥 清纯 综合图区 I 成人毛片av在线 I 日本乱人伦漫画 I 91国产美女视频 I 免费福利视频在线观看 I 日韩成人黄色 I 福利小视频在线

Logo
Saintfabric
Bulletproof material application
Kevlar
In the early 1970s, Kevlar, a synthetic fiber with ultra-high strength, ultra-high modulus and high temperature resistance, was successfully developed by DuPont of the United States, and was quickly applied in the field of bulletproof.
The emergence of this high-performance fiber greatly improves the performance of soft textile body armor, while also improving the comfort of the body armor to a large extent. The U.S. military took the lead in using Kevlar to make body armor, and developed two models of light and heavy. The new body armor is made of Kevlar fiber fabric as the main material and bulletproof nylon cloth as the envelope. The lightweight body armor is composed of 6 layers of Kevlar fabric, and the medium weight is 3.83 kg. Compared with nylon and glass fiber bulletproof vests, the weight is reduced by 50%; in the case of the same mass per unit area, its protective force can be at least doubled, and it has good flexibility.
Kevlar
Jungle camouflage body armor
UHMWPE
UHMWPE is a fiber spun from polyethylene with a relative molecular mass of 1 million to 5 million. It is currently the world’s strongest and lightest fiber. Its strength is 15 times higher than that of steel wire. Very light, up to 40% lighter than materials such as aramid.
In terms of national defense equipment, because the fiber has good impact resistance and greater energy absorption, it can be made into protective clothing, helmets, and bulletproof materials in the military, such as armored protective panels for helicopters, tanks and ships, and radar Protective shells, missile covers, body armor, stab-resistant vests, shields, parachutes, etc., among which the application of body armor is the most eye-catching.
It has the advantages of lightness and softness, and has now become the main fiber occupying the US bulletproof vest market. In addition, the specific impact load value U/p of the ultra-high molecular weight polyethylene fiber composite material is 10 times that of steel, and more than twice that of glass fiber and aramid. Bulletproof and riot helmets made of fiber-reinforced resin composite materials abroad have become substitutes for steel helmets and aramid-reinforced composite helmets.
HPPE
Body armor
 Liquid bulletproof material
The main component of liquid bulletproof material (TBS) is a special "shear thickening liquid (STF)", this liquid is generally composed of dispersed particles SiO2 and organic dispersion medium vinyl alcohol, polyethylene glycol, local propylene glycol or mineral oil One or more mixtures. Particles are freely suspended in the "shear thickening liquid". When the liquid is disturbed by a violent impact, the special particles in it collide with each other to form resistance to such agitation.
When the stirring force is large enough, these particles are actually "locked" with each other. When the bullet hits this material at high speed, the "shear thickening fluid" body armor will attract the impact energy and quickly become extremely hard, thereby absorbing the impact energy of the bullet.
TBS
Shear thickening liquid
Carbon nanotubes
Carbon nanotubes are one of the materials with the best mechanical properties found so far, with extremely high tensile strength and elongation at break. Its density is only one-sixth to one-fourth that of steel, and its tensile strength per unit mass is 276 times that of steel. The elastic modulus parameter of carbon nanotubes is 2.4 times stronger than Kevlar, and the overall performance is far More than any other materials currently discovered and manufactured by humans.
The bulletproof effect is mainly reflected in the modulus of elasticity, which means that the resistance strength of carbon nanotube fiber helmets or body armor is at least 2.4 times higher than that of Kevlar.
This body armor is made of carbon nanotubes made by nanotechnology. It was originally designed and developed for the 19th Special Forces of the US Army in Iraq. The patented material is thinner and softer, and the weight is only that of Kevlar, which is used in traditional body armor. Half, but also can prevent stab wounds, through the hardening of carbon nanotubes to prevent the tool from penetrating.
Carbon nanotube fiber
Carbon nanotube body armor
Graphene
As a new type of nanomaterial with the thinnest, strongest, and strongest electrical and thermal conductivity discovered so far, graphene is called "black gold" and is the "king of new materials". Scientists even predict that graphene will "completely change the 21st century." ". It is very likely to set off a disruptive new technology and new industrial revolution sweeping the world.
Scientists studying graphene body armor said that the body armor made of graphene has twice the protection capacity of the existing body armor technology (Kevlar). Although graphene still cannot be made into a powerful material alone, it can be composited into structural materials in multiple layers, so that it can stop the process of breaking outwards after being bombarded.
Graphene bulletproof materials can be widely used in military products such as armed helicopter protective armor, body armor, light protective armor, and explosion-proof equipment. It has broad market prospects in the civilian and military bulletproof materials market.
Graphene
Graphene body armor
Compressed glassy carbon
Compressed glassy carbon is a new type of carbon material with the bonding characteristics of graphite and diamond. It is a mixed hybrid composed of sp2 and sp3. It has strange properties, density and conductivity similar to graphite.
Its compressive strength is significantly higher than that of metal and ceramic materials, and its specific strength is more than twice that of carbon fiber, polycrystalline diamond, silicon carbide and boron carbide ceramics. Its hardness is equivalent to that of gemstones and can be used to scribe silicon carbide single crystals. The compression elastic recovery rate of its local deformation is more than 70%, which is significantly higher than that of metal and ceramic materials, and even higher than shape memory alloys and organic rubbers.
Compressed glassy carbon combines light weight, super strength, high rigidity, high elasticity and good electrical conductivity. It has excellent comprehensive performance and many potential applications, such as military armor and aerospace.
Glassy carbon
Glassy carbon particles
主站蜘蛛池模板: 国产午夜福利亚洲第一 | 苍井空浴缸大战猛男120分钟 | 处破痛哭a√18成年片免费 | 国产97在线 | 日韩 | 人人妻人人澡人人爽国产一区 | 日韩精品无码一区二区三区 | 动漫h无码播放私人影院 | 野花社区在线www日本 | 韩国专区福利一区二区 | 久久久久麻豆v国产精华液好用吗 | 色综合久久久久无码专区 | 亚洲人成无码网www动漫 | 国产精品女同一区二区 | 精品国产一二三产品区别在哪 | 日韩精品不卡 | 人妻妺妺窝人体色www聚色窝 | 国产特级毛片aaaaaa高清 | 欧美日韩国产免费一区二区三区 | 成人亚洲性情网站www在线观看 | 日本乱论视频一区二区 | 久久精品www人人爽人人 | 成人3d动漫一区二区三区 | 精品一区二区三区在线观看 | 国产成人一区二区三区别 | 免费人妻精品一区二区三区 | 中国老妇女毛茸茸bbwbabes | 国产视频一区二区 | 看全色黄大色黄大片 视频 日本少妇三级hd激情在线观看 | 久久婷婷五月综合色国产香蕉 | 欧美精品亚洲精品日韩已满十八 | 久久久久久国产精品免费免费男同 | 极品白嫩的小少妇 | 亚洲日韩av无码一区二区三区人 | 国产又黄又爽又色的免费视频 | 俺也来俺也去俺也射 | 狠狠人妻久久久久久综合蜜桃 | 国产熟妇另类久久久久久 | 亚洲自偷自偷在线成人网址 | 国产免费拔擦拔擦8x高清在线 | 国产啪精品视频网站 | 日本中文字幕乱 |